
WHITE PAPER
Duncan Kenzie
CTO, ExcelSystems Software Development, Inc.

Presto: A Staged Approach to Web
Enablement of Green Screen Apps

Exclusive Worldwide Distribution and Marketing Rights:
Business Computer Design International, Inc.
950 York Road
Hinsdale IL, 60521 USA
Phone: 630-986-0800
E-Mail: sales@bcdsoftware.com
Web: www.bcdsoftware.com

Software Development and Technical Support:
ExcelSystems Software Development, Inc.
101-9724 Fourth Street
Sidney, BC Canada V8L 2Y7
Phone: 250-655-1766
E-Mail: excel@excelsystems.com
Web: www.bcdsoftware.com

BCD

mailto:sales@bcdsoftware.com
http://www.bcdsoftware.com
mailto:excel@excelsystems.com
http://www.bcdsoftware.com

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 2

Making The Right Choice For Web-
Enablement Of IBM i Applications
There are still a large number of 5250, text-based applications
running on IBM i installations around the world. IT managers
and developers alike are challenged with finding a cost-effective,
yet reliable method of moving these applications from text
terminals to browser-based platforms. There are many
modernization options to choose from, some from IBM and
some from tools vendors. Making the right choice is important,
because any mistake can be costly, setting you back many man
months or even years in effort, and possibly costing many
thousands of dollars. This White Paper discusses reasons why
you should consider modernizing your 5250 applications, and
why Presto should be one of the tools in your arsenal to
accomplish that goal.

Why Web-Enabling Your Applications Makes
Sense
There are several compelling reasons for web-enabling your
applications, some of which have become even more relevant
recently with the advent of Web 2.0 technology. Some of these
are:

� To provide end-users with access to more timely
and understandable information.

� Make information more widely available, beyond the
reach of current organizational boundaries to customers
and business partners.

� To provide more productive, easier to learn and easier to
use applications.

� Nowadays, employees new to a company or new to the
workforce often have never used a green screen
application, but are already familiar with a web browser
interface.

� To demonstrate to upper management that the IBM i
platform is relevant to upper management, and that
there is no need to move critical business applications to
other platforms.

Table of Contents

2 Making The Right Choice For Web-
Enablement Of IBM i Applications
Why Web-Enabling Your Applications Makes
Sense
The Challenges of Achieving Web Enablement

4 Comparing Modernization Strategies

5 How Presto Works
Presto Runs Straight Out Of The Box
Presto Eliminates 5250 OLTP Costs on V5R4 +
Presto Requires No Additional Software or
Middleware To Purchase
Presto Does Not Need WebSphere To Run
Presto Does Not Need DDS Source
Presto Utilizes Web 2.0 Technology
Presto Produces True ‘Liquid’ Web Pages or
Monospaced Pages
The Presto Designer Gives You Control Over
Each Page Design
Presto Can Auto Detect and Identify Most
Screens
Enhance any Screen With The Presto Designer
Using Client-Side Scripting For Flexible
Presentations
Create Your Own Customizations
Project Management Provides Flexibility in
Design
Seamlessly Integrates With Existing Web
Pages or Applications
Embed Presto Applications in Nexus Portal
Using WebSmart To Further Enhance Presto-
Enabled 5250 Apps

14 What Skills Do You Need To Use Presto

15 Security and Presto

17 Conclusion

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 3

The Challenges of Achieving Web Enablement
There are several barriers to modernizing legacy IBM i applications and making
them web enabled that organizations encounter. These barriers have resulted in
many IBM i shops delaying the transition to browser-based applications. Some of
these are:

1. Confusion created by IBM’s complex solutions, frequent renaming and
rebranding of their tools, and frequent shifts in their guidance to
customers of how to modernize.

2. The existence of a large legacy codebase that is complex and time-
consuming to re-write.

3. Lack of web-development skills in existing personnel.
4. Lack of awareness of the productivity benefits of moving to web

applications.

This White Paper discusses reasons why you should consider modernizing your
5250 applications and how to address the challenges of Web Enablement. It will
explain why Presto should be one of the tools in your arsenal to accomplish that
goal.

If you have been frustrated or confused by IBM’s offerings, you can research
solutions from IBM ISVs. For example, BCD provides highly productive, easy to
learn solutions specifically designed for the IBM i platform. Our solutions are built
specifically to meet the needs of existing IBM i shops and their personnel, with a
strong emphasis on ease of use. In addition, we provide solutions that support the
full range of options for modernization, from extensive reuse of existing code to
complete rewrite as native web applications. For large, legacy codebases, you can
web-enable with no underlying code changes required using Presto. Or, you can
refactor some of that code into modules and reference it from true web apps or from
Presto-enabled apps.

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 4

Comparing Modernization Strategies
There are several different strategies you can pursue to transform legacy
applications to the web. Three of the strategies supported by BCD’s products are
outlined below.

1. Rapid re-engineering.
In this approach, you take your existing code base and separate the database and
business logic from the presentation logic, and refactor the ‘back-end’ code into
callable modules. Then, using a rapid application development tool such as
WebSmart (ILE or PHP editions), you build a web interface and integrate the back-
end business logic with the browser code. The result is a true web application,
running with the IBM i as the application and database server.

This strategy is great for organizations who have the time and human resources to
invest in training, planning, UI design and re-engineering work in order to build a
web application. Using a rapid development tool such as WebSmart can
dramatically cut down the amount of time required to succeed in such a project, by
reducing both the learning requirements and the actual development time. But if
you don’t have the resources, here’s another approach:

2. Instant Refacing.
This approach provides a web layer on your existing 5250 applications, without
adding any additional server overhead. BCD’s solution, Presto, intercepts the 5250
data stream and pipes it to the browser instead of a green-screen session, where it is
transformed on the client into a web page.

This strategy is great because it requires little or no initial effort on the part of your
IT staff, while providing a path for transforming features of individual pages on a
‘play by play’ basis: as you run an application, you can choose to enhance the UI, all
non-invasively, without having to touch any of the underlying codebase.

3. Enhanced Re-engineering.
This is a combination of the two previous strategies, and it allows you to leverage the
best of both worlds. You begin by instantly refacing your application- simply run it.
With Presto you can then choose to apply global options, such as different ‘skins’
(color schemes, logos, appearance of function key buttons, etc.) to every screen in an
application. Next, when running the application, as you encounter screens you need
to enhance you can add functionality, including more sophisticated user interfaces
and augmented server-side data access routines to supplement information needs.
For example, using AJAX and SOA technology you can call WebSmart programs
from within Presto-enhanced screens to incorporate new data into your application.
A typical example might be where you provide a dropdown box of available
shipping rates to a zip code by loading the information from a SOA interface to an
external web server such as UPS. This approach is also non-invasive- you can still
leave the underlying code base untouched. However, it has the added value of
providing new, relevant information to users of your application.

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 5

How Presto Works
Presto intercepts the data stream that is normally sent to an interactive green screen
session and pipes it to a standard web server application and browser interface. It
takes advantage of native System i web server technology, such as the Apache Web
Server, and uses standard web protocols such as HTTP and CGI programming.
Presto provides 5250 screen enhancement technology, allowing developers to deploy
5250 applications on the web using non-invasive design techniques. This means you
do not need to change any underlying RPG or DDS source code or recompile
anything in order to enhance the look and functionality of your applications. The
resulting applications use modern, native HTML, CSS and JavaScript to produce
professional quality pages that give your users the advantages of powerful web
applications. Presto comes with a PC-based application called Presto Designer that
mitigates the need for your staff to learn web technologies such as HTML and CSS
used by Presto.

Presto Runs Straight Out Of The Box
To start using Presto you complete a few simple installation steps. These include
loading the Presto library, configuring an Apache web server instance, then starting
that server. Next, open a browser window (Internet Explorer or FireFox, for
example), and go to a specified URL for your server, based on how you configured
the web server. You can literally be working with your existing green-screen
applications in a browser within 15 minutes. As Presto captures the 5250 data
stream it applies intelligent transformation rules to the data in order to present it in
the browser with a web application look and feel.

You can also install the Presto Designer on your PC. With this you can set up global
defaults for how your applications will look as web pages. These let you control the
appearance of every page. For example, if you want your organization’s logo on the
page, you make a simple change to a single HTML file. Another option is to choose
from one of several ‘skins’ that ship with Presto that determine the appearance of all
pages. Or, initially, you can just accept the default configuration as shipped, so you
are up and running as soon as possible.

Presto Eliminates 5250 OLTP Costs on V5R4 +
For i5/OS V5R4 or later, Presto only uses batch CPW when running. It uses no
interactive CPW. Presto jobs use only slightly more overhead than completely native
CGI applications to run, and significantly less than interactive jobs, so if your system
uses interactive CPW you can actually see a performance improvement when using
Presto instead of traditional green-screen sessions. If you run the WRKACTJOB
command you will see jobs in your interactive subsystem (usually QINTER), but
these are different than normal interactive jobs in that they are using no interactive
processing CPWs.

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 6

Presto Requires No Additional Software or Middleware To
Purchase
Presto uses the free HTTP Server powered by Apache that is available on every
iSeries, System i or IBM i. All other required components, including the PC-based
design tool, are included with Presto.

Presto Does Not Need WebSphere To Run
Because Presto uses the standard HTTP Server, it does not need WebSphere server
to run. Compared to some solutions from IBM, this also reduces the complexity of
installing, configuring and running Presto. In addition, it results in much fewer
system resources being used than with Java-based solutions.

Presto Does Not Need DDS Source
Some of your legacy applications may come from third-party vendors, or some may
have inaccurate or missing source code. Presto does not rely on source code in order
to modernize your applications. It reads and interprets the 5250 data stream
produced by your object code, dynamically, as you run your application. It also
intelligently identifies the uniqueness of screens so that you can reliably apply
customizations to those screens if you need to.

Presto Utilizes Web 2.0 Technology
Unlike other solutions, Presto is not a port of a PC Client/Server solution, but was
built from scratch to take advantage of the latest browser technology. In addition, it
uses the very latest software implementations, including partial page updates using
AJAX and JavaScript libraries of code for complete cross-browser compliance.

‘Web 2.0’ means different things to different people. One aspect of web technology
people often associate with Web 2.0 is social networking applications, such as
Facebook and Twitter. Also, web-based productivity apps such as Google docs are
often regarded as part of Web 2.0. All these applications rely heavily on JavaScript
libraries for greater productivity in programming and cross-browser compliance.
They also use AJAX technology extensively. The benefit of AJAX is that it provides
partial page updates in immediate response to user actions. For example, you can
immediately validate an input field as soon as the user exits it, and provide an error
message next to it.

Presto was built from scratch to run in browsers and to take advantage of Web 2.0
concepts. For example, each web-enabled 5250 screen replaces a specific area in the
main page, rather than regenerating a complete page each time. The result is pages
render data from the server as fast as possible. In addition, the user experiences a
smooth flow from one screen to the next, because the browser doesn’t have to load

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 7

an entirely new page each time. Pop-up windows also appear with clean user
interfaces, uncluttered by unnecessary borders or UI components. Also, you can use
take advantage of AJAX to perform partial page updates easily, so you can actually
enhance your original 5250 UI in the web browser, all without having to touch any
of the original code. Another advantage of AJAX is that it makes heads-down data
entry in web pages just as productive as in 5250 apps. This is because the response
time of sending and receiving data to/from the server is much faster than traditional
web page delivery, and comparable to 5250 interactive response times.

Presto also uses Web 2.0 JavaScript libraries, such as jQuery. jQuery provides easy
ways to do complex tasks, such as using AJAX. Normally, an AJAX routine in
JavaScript might be a 100 line long function. In jQuery you can accomplish the same
thing with one line of code. In addition, jQuery provides cross-browser compliance,
so Presto applications will run in all popular browsers such as Microsoft IE, FireFox
and Safari.

Presto Produces True ‘Liquid’ Web Pages or Monospaced Pages
The resulting output from Presto’s transformation of the 5250 data stream is true
HTML, CSS and JavaScript, consistent with modern web programming techniques.
For example, all HTML takes advantage of layout features of the markup language
that make it easy for you to redesign page layouts en masse with few changes to the
HTML. Pages are ‘liquid’ as opposed to ‘fixed layout,’ which means elements will
stretch and move according to the size of the containing browser window, just like
you would expect with any typical web site. Also, pages use HTML tables for
presenting screens that contain subfiles, or lists of records in the underlying green-
screen application. Tables are still recognized as the best way to present tabular data.
Function keys can easily be transformed to appear like graphic buttons with 2D or
3D appearances. And, they can be grouped to appear on different places on the
page. For example, you may choose to have them appear along the bottom, similar
to a traditional green-screen app, or stacked vertically along the left side of the page.

If you prefer, though, you can use the mono-spaced font (Courier, Courier-new)
skins provided with Presto. These have the advantage of having 5250 fields line up
more consistently in their web representation. However, many modern apps tend to
use proportional spaced fonts such as Arial or Verdana. You can easily switch back
and forth between mono and proportional spaced fonts to see which looks better.

The Presto Designer Gives You Control Over Each Page Design
The Presto Designer lets you see both the green-screen version of your page and the
web version. Figures 1 and 2 below show you an original green-screen followed by
the web version. In this case, the web version was initially automatically created by
Presto, based on the selected skin. Then, some transformations were added, such as
dropdown boxes to replace subfile options. In addition, if you want to rearrange
information, including text or data, the Presto Designer gives you complete text

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 8

editing capabilities for the HTML. You can add any HTML tags you choose, move
information around, or even hide it from the user. Unlike some tools, which have
their own proprietary language that you have to learn, Presto uses universal
standards for web programming, such as HTML, CSS and JavaScript. Once you
learn some of these skills, you can leverage them if you decide to build web
applications using web development tools such as BCD’s WebSmart.

Consider the illustrations below:

Figure 1. Original green-screen in the Presto Designer.

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 9

 This is the same green-screen program, enhanced with a custom skin:

Figure 2. Same screen, transformed using a custom skin.

Notice that, in Figure 2, the function keys (in green) now look like buttons, are
stacked vertically, and all have the same width. In this case, this was done by using a
customized skin, so this design will automatically apply to every page in the
application, without you having to apply it each time. The leftmost part of this
screenshot is an area within the Presto Designer that is used to describe the
customized screen.

Presto Can Auto Detect and Identify Most Screens
One of the configuration options of Presto lets you assign a specific part of each
screen (by row and column) that will be used to identify that screen uniquely. This
feature is important because it minimizes customization efforts. Instead of having to
find unique elements on each screen as they appear, you can focus on defining the
customizations. This works particularly well for applications where a screen id has
been embedded in the original 5250 application, for example. However, if you need
to, you can also define custom locations on any screen to uniquely identify it.

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 10

Enhance any Screen With The Presto Designer
The Presto Designer is a PC application that provides you with a suite of tools for
customizing your applications, either at a global level or for individual screens.

For global settings you can determine what graphics and fonts to use, or the location
of function or command keys on every page. You can also determine the mapping of
the keyboard as it corresponds to typical 5250 keyboard functions such as Enter,
Field Exit, Page Up and Page Down. You can run your application inside the
Designer and edit the generated web source code for any screen at any time. Presto
captures the underlying 5250 screen definition (screen title, screen constants,
function key usage, field layouts and lengths, etc.) and presents you with an interface
that lets you enhance the screen presentation.

Consider this illustration:

Figure 3. Moving dynamic content from the green screen display to the web version.

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 11

You can choose to see a vertical split-screen that shows the fixed-position green-
screen image for the screen being enhanced, along with text-based HTML in the
other part of the split. From this split screen you can highlight, by dragging the
mouse, parts of the green-screen image, then drag those onto the HTML area
(Figure 3). This provides a simple means of rearranging page content. For example,
you may choose to move error messages from line 23 to some place near the top of
your page. Simply highlight line 23, then drag and drop it where you want.

You can enhance the page presentation by adding any HTML or CSS to a page.
Presto shows you the initial HTML it uses to render the screen and provides you
with a full featured text editor for customizing the code. For example, you can easily
add images, change fonts, add tables, date pickers, dropdown boxes, etc.

You can also augment the functionality of the page by adding any JavaScript code for
client-side scripting (JavaScript routines). The next section explains this.

Using Client-Side Scripting For Flexible Presentations
One of the challenges of transforming 5250 screens into web pages is that each
screen can show different fields based on conditional program logic. For example, in
some circumstances a price override field on an order line might be available to a
customer if that item is on special. Each time the screen is presented it may appear
differently, even though it is coming from the same program. To address this, Presto
supports using JavaScript to validate, format and transform input fields. For
example, you can easily add a routine that checks if a field contains all numeric
characters, or is a valid date format.

You can also augment the functionality of any page by adding server calls directly
from the page to server-side code such as WebSmart programs. This functionality
takes full advantage of AJAX technology, allowing almost infinite extensions to
existing applications. For example, an AJAX call could be added to validate a field
against a database file, and then return a message to display if it fails the validation.
Or, you can easily add a calendar function to a date field, providing the ability to
popup a calendar in another window.

The Presto Designer will save any customized screen enhancements you create, on
the IBM i server, so you or other developers can modify them later. There is no need
to compile anything- once your changes are saved, the screen will immediately be
enhanced. The next and subsequent times you view the screen in a browser your
enhancements will included.

An Example Transformation
To change UI components on a screen, you simply edit the page in the Designer and
add lines of code to bottom of the page. These lines are called ‘transformations’
because they generally change something already on the screen, such as text or an
input field, into an improved UI component. For example, 5250 applications
commonly require users to type dates in input fields. When the user presses Enter,

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 12

the application validates the date. For example, it might check for valid month
number, number of days, or the year being within a certain range. With a Presto
transform statement you can change the input field into a ‘date picker’. This provides
the user with an icon next to the field to click on, so they can select the date from a
calendar. This minimizes the need for the program to make a trip to the server to
validate the date value. Here’s some example code of how to change an input field
on line 12, column 40 to a date picker:

{row: 12, col:12, to_object: "datepicker"}

To further simplify this, the next release of Presto contains a Visual design tool that
lets you select the field visually and set its properties to a date picker or other UI
elements.

Create Your Own Customizations
While we have provided a large number of common customizations with Presto, you
may have unique needs, depending on the design of your green-screen apps, or on
what you’d like for an enhancement. Presto has exit and entry points in the process
where screens are written to the browser that let you inject your own
customizations. These can be client-side, server-side (via AJAX calls), or a
combination of both. You can embed them in the customized pages just as you
would with the ones that ship with the product.

Project Management Provides Flexibility in Design
Presto supports a concept of ‘Environments’. Environments provide a way for you to
group a set of programs and/or screens with a common set of characteristics. You
can associate a production and/or test library with an environment, so the same
underlying 5250 program can have different versions of screen enhancements
available, and so that you can test changes without affecting the production version.
You can also associate a set of global defaults for any environment, such as which
Presto skin to apply to each screen. For example, you might choose to have an Order
Entry application use a different color scheme or graphics than a Human Resources
application. You can also copy screens between environments, so if you decide a
screen should have a different set of global values that affect its appearance it’s easy
to do so. Also, if you are an ISV and want to make a packaged application have a
customized look for each client, simply create a new environment for each client and
copy the screen enhancements there.

Seamlessly Integrates With Existing Web Pages or Applications
With Presto, you can specify a starting program and screen for your application, so
that it is possible to invoke your application via a URL from another page or from
the location bar of the browser and have it skip the initial standard 5250 signon

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 13

page. This feature helps make your applications work like true web apps, avoiding
the appearance of a 5250 session.

Using embedded AJAX technology or HTML such as customized links or forms you
can also integrate Presto applications directly with native web applications written
with WebSmart or other web development tools.

Embed Presto Applications in Nexus Portal
Nexus Portal is BCD’s web portal product, running on IBM i. Nexus Portal provides
a secure and consistent web user interface for managing and deploying web
applications. It also includes ECM (Enterprise Content Management) features. You
can embed Presto applications in Nexus Portal by configuring portlets to run the
applications. Again, you can configure these so that the initial 5250 signon screen is
skipped, avoiding the need for the user to sign in twice. Instead, they log on to the
portal using the web interface. The pages they see are controlled based on their user
profile and the Nexus group(s) they belong to. Using the administration web
interface in Nexus, the Nexus administrator can decide which Presto applications a
user has access to, by granting the appropriate authority to the portlet. Presto comes
with some skins that have an appearance compatible with Nexus skins, so Presto
apps can have the same look as their container portlets and the Nexus portal in
general.

Using WebSmart To Further Enhance Presto-Enabled 5250 Apps
WebSmart is BCD’s Rapid Application Development Tool for building true web
applications running on IBM i. WebSmart uses intelligent templates to create
complete web applications with little or no programming required. You can use
WebSmart in conjunction with Presto applications to extend the functionality of the
apps beyond just UI formatting and incorporating web UI elements such as
dropdown boxes and links. For example, WebSmart programs can perform
additional database access or updates, or extend the existing application with new
business logic. Using AJAX as the glue that holds Presto and WebSmart apps
together, you can embed calls to WebSmart programs directly in Presto customized
pages, without having to touch any of the original codebase. As the page appears, it
first renders and translates the 5250 data stream. Then, if you have embedded calls
in the custom pages, those calls are performed, and any additional output or
business logic done by the called WebSmart programs are included in the final
version of what the user sees.

You can write WebSmart programs using the ILE version, which generates RPG CGI
objects, or with the PHP version.

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 14

What Skills Do You Need To Use Presto
The degree of web technology skills you and your team will need depends on how
much customization you want to do. Here’s a table of approaches and skills needed:

As you can see, you can produce great looking applications without having to know
much web technology initially. Presto also encourages an incremental approach to
translating 5250 screens. You can start running all your screens right out of the box,
with no intervention on your part to customize those screens. Then, as you progress,
or get more feedback from end-users, you can begin to customize screens on an as-
needed basis. Eventually, you can move on to more sophisticated approaches where
you actually start extending the application to include more functionality.

To customize pages, it is helpful to have basic HTML knowledge, along with CSS
(Cascading Style Sheets). HTML is generally used to present content, while CSS is
used to control page layout, but sometimes HTML is also used for layout. For
example, coding HTML tables is still the best method for presenting tabular data
like subfiles in a web page. Fortunately, when you initially edit a custom page that
Presto identifies as being a list, or subfile screen, the initial HTML table markup is
generated for you, making it easier for you to understand and customize.

Approach Web Technology Skills

Out of the box- just change skins and
environment settings

None

Create your own skins Some HTML and CSS (or hire a web
designer)

Create custom pages of 5250 screens HTML and possibly some CSS
Transform areas of screens to use web
UI features

Minimal JavaScript (explained in User
Guide extensively)

Include AJAX calls to WebSmart
programs to include more UI elements
or business logic

JavaScript function call to AJAX
(explained in User Guide extensively),
WebSmart programming

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 15

Security and Presto
Because Presto runs as a web application, many of the same security considerations
that apply to conventional web applications also apply to Presto-enabled
applications. There are many possible ways to configure access to your System i,
such as using Firewalls, proxy servers and VPN (Virtual Private Network) servers. A
detailed discussion of these is beyond the scope of this document. These are the
general areas of concern you should consider:

1. Data transmission between client (browser) and server (System i/Presto
server). To secure data transmission, you should use SSL (Secure Socket
Layers). SSL encrypts data prior to transmission, sends it encrypted ,
then decrypts it. This works both ways. In other words, if the user sends
a response to a page via a browser, the data is encrypted in their browser
prior to being sent back to the server. Likewise, when the web server
sends data to the client, it encrypts it. All major commercial B2C sites
use SSL, such as Expedia and Amazon. Note that this is more secure
than Telnet, a common protocol for 5250 apps over TCP/IP, since Telnet
does not encrypt transmitted data.

2. Network configuration (firewalls, etc.).
3. Apache web server on IBM i. You can configure Presto to run in an Apache

web server instance that is shared by other applications (such as BCD’s
Nexus portal, or any WebSmart programs you might create). Or, you
can configure a separate instance, just for Presto apps. The Apache
configuration ensures that all users are restricted to only those areas
(libraries and/or programs, IFS directories and/or files) that you
explicitly open up for access. You can also impose authorization
schemes on these resources, requiring users to type a valid user id and
password before being allowed to proceed further.

4. IBM i user profile security. For most Presto apps, the first screen a user will
see is the sign-on screen, requiring them to enter a user id and
password, just like any 5250 session. You can configure Presto to bypass
the signon screen. For example, you can embed Presto apps in Nexus. If
you do this, Nexus can retrieve the user id and password from a
temporary cookie to login to Presto. There is a slight security risk here.
Even though the password is encrypted in Nexus, it must be briefly
decrypted in the browser when it is passed to Presto. If someone got a
hold of your PC and grabbed the cookie while you were logged in, they
could possibly steal your password. However, the same risk exists with

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 16

5250 apps. If you leave them signed on, it’s possible for someone to
change your password and then login with the new one.

5. IBM i object security. All the same object security that applies to 5250
apps will be enforced by the Presto application.

If you want to allow outsiders to access your application in the web, you can take a
couple of approaches. One is to create a unique user profile and password for every
user who needs access. Another is to create a single user profile and password and
write an API interface that maps those values to your own custom database of user
ids. A third option is to use Nexus’ user management features to interface to Presto.

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 17

Conclusion
Presto provides a low risk option for IT groups who do not have the time, resources
or skill set to rewrite large, legacy 5250 applications as web applications. It is low risk
because it provides you with a staged approach to web-enablement and because it
does not require any changes to your existing source code. It also provides you with
a future development path, in conjunction with rapid application development tools
for the web, such as WebSmart ILE or WebSmart PHP. As your skills develop and
resources become available, you can selectively re-engineer or rewrite parts of your
application with WebSmart.

You and your staff need minimal time and minimal understanding of web
technologies to produce professional-looking, functionally rich web versions of your
5250 applications. In addition, because Presto on V5R4 and higher uses no
interactive resources, you can gain improved performance and lower system impact
by running your apps using Presto. You can also use Presto to make applications that
were previously shackled to inside users only available on the web to business
partners such as customers, vendors or remote employees/contractors, thus further
extending the life of your applications.

Your users will appreciate working in a new, attractive environment, with
productivity and ease of use tools to make your applications exciting and friendly to
use. Finally, management will believe in the relevance of the IBM i for the future and
perceive it as a web server capable of delivering cutting-edge applications. All these
benefits come with minimal investment in time and resources.

Presto: A Staged Approach to Web Enablement of Green Screen Apps Page 18

Copyright Notice
This White Paper is written and produced by ESDI using Adobe FrameMaker 7.0. Copyright © 2009. ESDI. All rights reserved.
This document many not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium
or machine readable form without written consent from ESDI. Last updated April 23, 2009.

Conventions
In this guide the term ‘iSeries’ is used to refer to the System i, eServer i5, iSeries and AS/400 computer systems.

Acknowledgments
Throughout this white paper, reference is made to several trademarks: WebSmart is a registered trademarks of ESDI in the US
and Canada, trademark elsewhere in the world Presto is a trademark of BCD. IBM, System i, iSeries and OS/400 are either
registered trademarks or trademarks of International Business Machines in the United States and/or other countries. Windows® is
a registered trademark of Microsoft Corporation in the United States and/or other countries. All other trademarks are
acknowledged as the properties of their respective owners.

About the Author
Duncan Kenzie is the president and
CTO of ExcelSystems Software
Development Inc., the authors of
Presto, WebSmart ILE & PHP, Nexus,
Catapult, and many other System i
productivity tools, exclusively
marketed by BCD Software
International.

Duncan began his career with IBM
and has 30 years experience in the
Midrange space. He is a frequent
speaker and author of several
technical articles for leading
Midrange publications, and is an
expert in web technologies on the
System i.

For more information
For more information on Presto, and
BCD Software International, visit our
website: www.bcdsoftware.com

http://www.bcdsoftware.com/wsphp/

